

Honours Project

FPGA Implementation of a
Simple Microprocessor

Napier University Edinburgh

BGEPB1 MicroController
 for Spartan-3 PFGA

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 2 -

Title Page

NAME: Benjamin Grydehoej
MATRICULATION NO.: 04007714

UNIVERSITY: Napier University Edinburgh
EDUCATION: BEng (Honours) Electronic and Computer Engineering
MODULE TITLE: BEng Honours Project
MODULE NO.: SE42201
PROJECT TITLE: FPGA Implementation of a Simple Microprocessor

SUPERVISOR: Dr. Thomas David Binnie

SUBMISSION DATE: 5/5/2006

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 3 -

Abstract
This report covers implementation of a simple 8-bit microprocessor in a FPGA, the design

is made as an emulated standard 8051 microcontroller. It is build based on the free

PicoBlazeTM IP Core from Xilinx, containing a Special Function Register which is

specifically chosen for this microcontroller. BGEPB1 is short for (BG-Electronic PicoBlaze

version 1). The microcontroller is implemented with parallels input and output ports (I/O

ports), serial UART, timers and interrupts. The microcontroller interface is programmed in

VHDL and the test programs for the microcontroller are made in C-code language using

the PCCOMP compiler by Francesco Poderico. Tested in both ModelSim, a simulating

tool, and in practical on the development board named Spartan-3 starter kit from Xilinx

using the FPGA XC3S200. The second part of the report is regarding the design of a CAN

bus hardware interface for the development board and a CAN VHDL interface for

transmitting data through the CAN bus level converter out on to the CAN bus. The last part

of the report is a setup guide for the software used to implemented and design new VHDL

function.

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 4 -

Acknowledgement

I thank the following individuals for their contribution of PicoBlaze

microcontroller Core and Development tool there are used for this project.

• Ken Chapman, Xilinx Ltd. Benchmark House

PicoBlazeTM core and Serial UART

• Xilinx Inc.

ISE Service Pack

• Model Technology, a Mentor Graphics Corporation

ModelSim XE II/Starter

• Francesco Poderico

PCCOMP PicoBlaze C Compiler

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 5 -

Table of Contents

Title Page... 2
Abstract.. 3
Acknowledgement .. 4
Table of Contents... 5
Chapter 1: Introduction

1.1. About the project...7
1.2. Aim of the project ...7
1.3. Project description...8
1.4. Requirement specification...9
1.5. Problem solution ...10
1.6 Time-Plan...11

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface
2.1. Introduction...12
2.2. Background of PicoBlazeTM..12
2.3. Implementation of core and Parallel I/O with interrupts ..14
2.5. VHDL code for the I/O Ports interface...15

Reset to standard value: ...15
Write and Read to I/O ports: ..16
Interrupt System:..17

2.6. Test software in C code...20
2.7. Simulation ...21
2.8. Test and result ...22

Chapter 3: Implementation of serial UART
3.1. Introduction...23
Specification: ...23
3.2. Implementation of serial UART ...24

Read and write to UART: ..25
BAUD Rate Timing: ..26
Serial Status Register: ..27

3.3. Simulation ...28
3.4. Test and result ...28

Chapter 4: Implementation of Timers
4.1. Introduction...29
4.2. Implementation of Timers...29

Timer Register: ..31
Calculation of timer value:...32

4.3. Simulation ...33
4.4. Test and result ...34

Chapter 5: Implementation of Serial Flash ROM interface
5.1. About serial interface ..35

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 6 -

Chapter 6: Design of CAN-BUS Interface

6.1. Introduction...36
6.2. Design of CAN-BUS Hardware Interface ..38
6.3. Design of CAN-BUS VHDL interface for transmitting ...40
6.4. Simulation ...42
6.4. Simulation ...42
6.5. Test and result ...42

Chapter 7: Software Setup
7.1. Introduction...43
7.2. Setup of C and ASM Compiler ...43
7.3. Simulation in ModelSim ...45
7.4. Download to FPGA via iMPACT tool..46

Chapter 8: Conclusion .. 48
Related Materials and References

References:...49
Bibliography: ...49
Software: ..49

Appendix A:
The VHDL code for I/O Interface..50

Appendix B:
Special Function Register (BGEPB1.h)...55

Appendix C:
Pin Option for FPGA and Development board..56

Chapter 1: Introduction Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 7 -

Chapter 1

Introduction

1.1. About the project
A microcontroller in a Field-Programmable Gate Array (FPGA) is not world news, but a

free 8051 emulate core in a FPGA is not available on the marked at the moment. There is

an embedded microcontroller core on the market at the moment which matches the

project, though without Control Area Network (CAN) bus Interface. It is the PB8051 Xilinx

AllianceCORETM[1] to the price of $ 495.95.

The embedded microprocessor cores for FPGA is split up in Hard-core and Soft-core

processors, a Hard-core Processor is the IBM PowerPCTM 405 32-Bit RISC processor

which run on Xilinx Virtex-II Pro and Virtex-4. The Soft-core processor is a MicroBlazeTM

32-bit RISC core which runs up to 180MHz in a Virtex-4 with 166 MIPS build for complex

systems, networking, telecommunication, data communication and embedded systems. All

these microprocessor cores need a license to be used in a product. Another free soft-core

processor from Xilinx is the PicoBlazeTM core which is an 8-Bit RISC processor this can be

implemented on Virtex™ and Spartan™ series of FPGAs and CoolRunner™-II CPLDs.

This microprocessor is the one chosen for this project because it is free and makes it

possible to run in a low cost Spartan 3 FPGA. The purpose of this project is to make a

cheap microcontroller core with peripherals like an 8051 standard microcontroller plus a

CAN bus interface that makes it possible to customize the core for special projects.

1.2. Aim of the project
The aim for this project is to get know-how about FPGA and Very High Spe/ed Integrated

Circuit Hardware Description Language (VHDL), and to integrated PicoBlazeTM processor

in the Spartan-3 FPGA with Input and Output for parallel and serial interfaces and finally

simulate and test the project in practical.

Chapter 1: Introduction Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 8 -

1.3. Project description
The block diagram in figure 1.1 shows the upcoming design of an emulated 8051

microcontroller, consisting of the Xilinx PicoBlazeTM microprocessor, with a instruction

Read Only Memory (ROM) which makes it possible to run machine code from the ROM,

generate by assembly or C code compiler. The machine code for the Instruction ROM is

uploaded via the Xilinx program called Project navigator, using the iMPACT tool. The

machine code is uploaded with the VHDL code for the project via Joint Test Action Group

(JTAG).

The size of the Instruction ROM is only 1K x 16 and very small and will only be used as a

Boot or Monitor ROM with all necessary information for communication to the peripherals,

for more external ROM space available in the serial Flash which communicates via serial

data control by the Serial Flash ROM interface Block.

Boot Rom
Instruction Code

1K x 16

PicoBlaze
Core

Serial UART

Timer

Serial Flash Rom
Interface

CAN Bus UART

Special Function
Register

80
51

 E
m

ul
at

io
n

Pe
rip

he
ra

ls

Watchdog
Timer

Reset

System
Clock

CLK (50MHz)

Control
WR
RD

PSEN

EA

Address
Decoder

Data[7:0]
ADD[15:0]

I/O PORTS

P1[7:0]
P3[7:0]
P4[7:0]
P5[7:0]

In
te

rn
al

 A
dd

re
ss

/D
at

a
an

d
C

on
tr

ol
 B

us

Serial Flash Rom

FPGA

Platform Flash

JTAG

JTAG

Figure 1.1 – Block diagram over BGEPB1 Emulated 8051 Microcontroller

Chapter 1: Introduction Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 9 -

1.4. Requirement specification
The specification for the project is described in this paragraph and all the special function

calls are made out from the list for Special Function Register (SFR) showed in table 1.1.

The project consists of building an embedded microcontroller in a FPGA with a CAN-Bus

interface shown in the block diagram at page 8 figure 1.1. The specification of the project

is listed in bullets point under this text.

• PICOBLAZETM CORE AND BOOT ROM (Use the PicoBlazeTM features showed on page 13)

• SERIAL UART (RS232) (Standard configuration 1 start bit, 8 data bit, no parity and 1 stop bit)

• CAN BUS UART (Designed to ISO 11898-1, CAN 2.0A & B, support bit rates up to 1Mbit/s)

• TIMER (Timer 0 as 8-bit Timer and Timer 1 as 16-bit Timer)

• SERIAL FLASH ROM INTERFACE (Controller interface or extern serial program store up to 2Mbit)

• SPECIAL FUNCTION REGISTER (SFR) (The SFR control all the call to ports, serial UART, Timer etc.)

• WATCHDOG TIMER (Automatics reset of the microcontroller with problems in the code)

• SYSTEM CLOCK (Standard option is 50MHz, run up to 200MHz or 100MIPS in a Virtex-II Pro FPGA)

• CONTROL (Control signal for external Rom and RAM or other peripherals components)

• ADDRESS DECODER (Address bus expander up to 16 bit wide)

• I/O PORTS (Port 0, 1, 3, 4 and 4 with external interrupts and Serial RS232 and CAN interface)

Symbol: Name: Address:
P0 Port 0 HEX 01
P1 Port 1 HEX 02

P2L Port 2 (Address Bus low byte “the lower 8-bit part of 16-bit”) HEX 03
P2H Port 2 (Address Bus high byte “the higher 8-bit part of 16-bit”) HEX 04
P3 Port 3 HEX 05
P4 Port 4 HEX 06
P5 Port 5 HEX 07

SBUF Serial channel buffer register HEX 08
TLBS Timer Low BAUE Rate Serial (Low byte part of 16-bit) HEX 09
THBS Timer High BAUE Rate Serial (High byte part of 16-bit) HEX 0A
SCON Serial channel control register HEX 0B
IEN0 Interrupt enable register 0 HEX 0C
IEN1 Interrupt enable register 1 HEX 0D
ISC0 Interrupt service control register HEX 0E

TCON Timer service control register HEX 0F
TC0 Timer Count 0 (8-bit) HEX 10

TCL1 Timer Count Low 1 (part of 16-bit) HEX 11
TCH1 Timer Count Low 1 (part of 16-bit) HEX 12

Table 1.1 – List over Special Function Register.

Chapter 1: Introduction Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 10 -

1.5. Problem solution
The task concerns the building an embedded microcontroller in a FPGA with a CAN bus

interface from the requirement specifications at page 9. The microprocessor used for this

project is the Xilinx PicoBlazeTM microprocessor core and the task is to implement parallel

Input/Output port interfaces with Interrupts, serial UART, Timer and a CAN BUS interface.

It can be necessary to implement the VHDL code giving access to the Serial Flash ROM

for more program space.

The PicoBlazeTM core, the Instruction ROM and the serial UART is VHDL code which will

be downloaded as free IP Core available from Xilinx.com homepage. The rest of the

blocks in the block diagram in figure 1.1 at page 8, are functions of VHDL code

constructed from scats.

The process for the project will be implementation of the PicoBlazeTM core with Boot ROM

and Serial UART and create and implemented an Input/output interface with Interrupt

control. Two different timers, a Timer 0 using an 8-bit counter and a Timer 1 which uses a

16-bit counter. The last unit there will be create and implemented is the CAN bus UART

which also will be build from nothing. All the functions will be controlled by the Special

Function Register showed in table 1.1 at page 9.

Chapter 1: Introduction Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 11 -

1.6 Time-Plan

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 12 -

Chapter 2

Implementation of PicoBlazeTM with I/O ports interface

2.1. Introduction
This chapter descripts the PicoBlaze core and its features for the processor and how to

implement the microcontroller core in a Spartan-3 FPGA with parallel Inputs and Outputs

and interrupt service controller for external interrupt at I/O pins. This chapter will cover all

the steps from the design of I/O ports VHDL code and set the Xilinx project navigator up

and make a C language test program for the I/O ports to test the system in hardware.

2.2. Background of PicoBlazeTM
The PicoBlaze microcontroller is a compact core, making it possible to download free

version without IP license from Xilinx.com after registration of user. The microcontroller is

an embedded 8-bit RISC core optimized for the Spartan-3, Virtex-II, and Virtex-II Pro

FPGA families. The PicoBlaze microcontroller is optimized for efficiency and low

development cost. It occupies just 96 FPGA slices, or 12,5% of an XC3S50 FPGA, and

performs a respectable 44 to 100 million instructions per second (MIPS). For development

on the PicoBlaze microcontroller the tool named Xilinx project navigator version 6.3.03 is

used. This is a free software from Xilinx ready to download at Xilinx.com and makes it

possible to add I/O ports, serial UART, timer, etc. To make C language test software for

the microprocessor there are used two compilers one from Francesco Poderico’s named

PCCOMP, a DOS version, which compile the C language code to ASM code written in

notepad. The second compiler is from Xilinx and named KCPSM3 which compile the ASM

code to VHDL and making it ready to download to the FPGA after complete compiling of

the project in the Xilinx project navigator.

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 13 -

Features:
The block diagram in figure 2.1 show the PicoBlaze microcontrollers supports the following

features.[2]

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during

FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or

100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3, Virtex-II, and Virtex-II Pro FPGA architectures just 96

slices and 0.5 to 1 block RAM

• Assembler, instruction-set simulator support

Figure 2.1 – PicoBlaze embedded microcontroller Block Diagram

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 14 -

2.3. Implementation of core and Parallel I/O with interrupts
The block diagram in figure 2.2 show the PicoBlaze connected with instruction ROM and

the I/O interface for read and writes 8-bit’s values (HEX 00 - FF) to the ports P0, P1, P3,

P4 and P5 and write 16-bit’s addressed (HEX 0000 - FFFF) out to port 2 compared with

the purple I/O ports block and blue address decoder block at the BGEPB1 emulation 8051

peripherals block respectively in the diagram in figure 1.1 page 8. The system is created

with three external interrupt pins at port 1 to receive external interrupts from hardware,

example a keyboard switch or some other hardware inputs.

The PicoBlaze processor core communicate to the Input/Output Ports block (I/O block) via

OUT_PORT which is an 8-bit data transmit out of the microcontroller in an internal pipeline

to the I/O block. To receive data the internal pipeline IN_PORT is used which receive 8-bit

data value from the I/O block. The PORT_ID is the port identity to chose the right channel

for read or write via the internal pipeline, it is possible to control up to 256 I/O ports.

Figure 2.2 – Block diagram over I/O interface

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 15 -

2.5. VHDL code for the I/O Ports interface
The VHDL code is program in Xilinx project navigator, made from the BGEPB1 Special

Function Register (SFR) shown in the requirement specifications in chapter 1.4 table 1.1 at

page 9. The complete code is shown in appendix A page 50, under this text there are a

cut-out of the reset routines from the I/O interface code.

Reset to standard value:
This code show the value of the I/O ports after reset where all ports will be set to high

impedance level or synthesizable tri-state buffer. The Address bus is set to Hexadecimal

0000 this means the address bus will point on the memory at address 0, the maximum

size of addressable memory will be 216 = 65336 or 64Kbyte.

Figure 2.3 – VHDL code for reset data value for I/O interface to default.

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 16 -

Write and Read to I/O ports:
The I/O interface code looks at the Read- or Write-enable input and the ID input and uses

Data-in and Data-out for transmit and receive data from this unit. As an example for

transmit data to Port 0 also called DataBus, the programe uses the ID named (ID_io) HEX

01, the Write Enable named (WE_io) and the Data in named (Data_in_io) to write to Port

0. When the statement is true the processor will transmit the data value out on port 0. For

receive data from Port 0 it is necessary to send a Read Enable named (RE_io) and the

processor can read the value. The same in force for Port 1, Port 3, Port 4 and Port 5 but

Port 2 is different because this is a 16-bit Address bus for sending data to this port it is

necessary to send the data in two parts. First the low byte and second the high byte using

the ID HEX 3 and HEX 04. This port can only transmit data and not receive anyone.

Figure 2.4 – VHDL code for Transmit and Receive data to I/O interface.

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 17 -

Interrupt System:
The Interrupt system is used to control the external and internal interrupts build up after

the principle from the 8051 microcontroller standard. The register is modified and there are

used different Special Function Register (SFR) value compared with an 8051.

In figure 2.5 and 2.6 are the Interrupt Enable register IEN0 and IEN1 shown in this register

it is possibility to activate and deactivate interrupts only the Watch Dog Timer (WDT) is not

possible to disable after the enable. The Enable All (EA) enables all interrupts or disables

all interrupts.

Figure 2.5 – Special Function Register IEN0

Bit Function
EX0 Enables or disables external interrupt 0.

If EX0 = 0, external interrupt 0 is disabled.
EX1 Enables or disables external interrupt 1.

If EX1 = 0, external interrupt 1 is disabled.
EX2 Enables or disables external interrupt 2.

If EX2 = 0, external interrupt 2 is disabled.
ET0 Enables or disables the timer 0 overflow interrupt.

If ET0 = 0, the timer 0 interrupt is disabled.
ET1 Enables or disables the timer 1 overflow interrupt.

If ET1 = 0, the timer 1 interrupt is disabled.
ET2 Enables or disables the timer 2 overflow interrupt.

If ET2 = 0, the timer 2 interrupt is disabled. (This bit is not used in this version)
WDT Enables the Watch Dog Timer overflow interrupt.

If WDT = 1, the timer is activate and can not disables with out hardware reset.
EA Enables or disables all interrupts. If EA = 0, no interrupt will be acknowledged.

If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable
bit.

Table 2.1 – List over Special Function Register IEN0

Figure 2.6 – Special Function Register IEN1

Bit Function
ES0 Enables or disables Serial interrupt 0.

If ES0 = 0, Serial interrupt 0 is disabled.
EC0 Enables or disables CAN-BUS interrupt 0.

If EC0 = 0, CAN-BUS interrupt 0 is disabled.
Table 2.2 – List over Special Function Register IEN1

Note: The hatch last six bits is reserve for next version.

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 18 -

The Interrupt Service Control (ISC0) HEX 0E sets a flag in this register. If an interrupt is

activate it will be controlled by hardware. The flag is read and cleared by software in the

Interrupt Service Routine it is cleared bitwise in the ISC0 Special Function Register show

in figure 2.7.

Figure 2.7 – Special Function Register ISC0

Bit Function
IX0 Read FLAG for external Interrupt 0

If IX0 = 1, external interrupt 0 is set.
Clear the FLAG in Interrupt service routine with set bit IX0 to 0.

IX1 Read FLAG for external Interrupt 1
If IX1 = 1, external interrupt 1 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX1 to 0.

IX2 Read FLAG for external Interrupt 2
If IX2 = 1, external interrupt 2 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX2 to 0.

IT0 Read FLAG for Timer 0 overflow Interrupt.
If IT0 = 1, Timer 0 overflow Interrupt is set.
Clear the FLAG in Interrupt Service Routine with set bit IT0 to 0.

IT1 Read FLAG for Timer 1 overflow Interrupt.
If IT1 = 1, Timer 1 overflow Interrupt is set.
Clear the FLAG in Interrupt Service Routine with set bit IT1 to 0.

IT2 Read FLAG for Timer 2 overflow Interrupt.
If IT2 = 1, Timer 2 overflow Interrupt is set.
Clear the FLAG in Interrupt Service Routine with set bit IT2 to 0.
(This bit is not used in this version)

IS0 Read FLAG for external Interrupt 2
If IX2 = 1, external interrupt 2 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX2 to 0.

IC0 Read FLAG for external Interrupt 2
If IX2 = 1, external interrupt 2 is set.
Clear the FLAG in Interrupt Service Routine with set bit IX2 to 0.

Table 2.3 – List over Special Function Register ISC0

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 19 -

The VHDL code for the Interrupt System and handling of external interrupts is show in

figure 2.8 under this text, to enable interrupts it is necessary at write to SFR HEX 0C

named IEN0 where EA (Enable All) activates the MSB and the interrupts which are

needed, example EX0 and the value to the register will be HEX 81 to set MSB and LSB.

When there receives a interrupt on EX0 the function in line 318 set a flag in the Interrupt

service control register the PicoBlaze read the flag and clear the afterwards.

Figure 2.8 – VHDL code for Interrupt System and external interrupts.

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 20 -

2.6. Test software in C code
This part describes and gives an example on a C code test program which is to test the

communication between the C code language software and the Hardware description

language. This is to test the ports for receiving and transmitting data and the interrupt

request system. The C test program is written in Notepad and named prog_rom.c. The

code is compiled by the PicoBlaze C Compiler PCCOMP alpha version 1.7.3 which is

running in a DOS shell. The Program starts including the Spartan3.h file there is a part of

the C compilers advanced function as read and write to I/O ports to use this function

named OUTCHAR and INCHAR. The second file Included is the file named BGEPB1.h

and this is the option file for the VHDL interface for the microcontroller (Special Function

Register) for I/O ports and interrupts service shown in appendix B page 55.

Figure 2.9 – C code for Test of I/O ports and Interrupt System.

The Interrupt service control flag is just test with an IF statement which looks on the flag

and send the value to port 5 if the flag is set. The reason that there is not used interrupt

service routine in the test program is due to some problems with this function giving

compiler errors when using the example from Francesco Poderico.

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 21 -

2.7. Simulation
The VHDL code for the BGEPB1 system and the C-code test program at page 20 is

simulated in ModelSim with a view on Inputs and outputs which are accessed via the

FPGA connections. Read more about this option for the test bench simulation in chapter

7.3 at page 45.

After reset of the FPGA the system will be initialized and will read and write to the ports as

shown in figure 2.10, It is not possible to see the clock cycle in the simulation because one

clock cycle is only 20nS and the simulation is shown from 0 to 25µS. after 4µS are the first

data write out to the 16-bit address bus and afterwards the other ports will be written out

after the structure in the code. Port 5 counts up, shown in the bottom of the simulation, and

it will take only 6µS for each addition to the port.

Figure 2.10 – Simulation of the program in ModelSim

Chapter 2: Implementation of PicoBlazeTM with I/O ports interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 22 -

2.8. Test and result
The practical test is done with a logic analyzer as in this example it is connected to port 4

and 5. Port 4 is the values send in from port 3 in this case the slide switch on the

development board is set to HEX 55 and port 5 is run as a counter, counting up. Figure

2.11 shows the screenshot from the data analyzer program which has been used to check

the output from the FPGA measurement on the development board. The port connection

of the FPGA is shown in appendix C page 56.

Chapter 3: Implementation of serial UART Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 23 -

Chapter 3:

Implementation of serial UART

3.1. Introduction
This chapter describes the option for the serial UART transmitter and Receiver Macros

development by the company Ken Chapman, Xilinx Ltd. The macros package is created to

run on following FPGA’S, Virtex, Virtex-E, Virtex-II, Spartan-II and Spartan-3. The macros

provide the functionality of a simple UART transmitter and simple UART received each

with the fixed characteristics of 1 start bit, 8 data bits (serially transmitted and received

least significant bit first), No Parity and 1 stop bit.[3] This option makes it possible to

communicate with a PC using a standard configuration the only thing needed setup for

running the communication successfully is the Baud Rate timing which has been made

adjustable in the SFR Register for the BGEPB1 microcontroller option.

Specification:
The standard baud rate the UART runs with is from 9600 and can support up to 115200.

The serial UART operates after the standard with asynchronous receiver and transmitter

that means the transmitter and receiver is not synchronised. The Serial UART contains an

embedded 16 byte FIFO (First In First Out) buffer which just looks at the total size of data

received or transmitted. The serial UART block diagrams for RX and TX is show in figure

3.1

Figure 3.1 – Serial UART block diagrams.

The data is transmitted serially, LSB first, and given a bit rate from the BAUD rate. Since

the transmitter can start sending this data at any time, the receiver needs a method of

identifying when the first (LSB) is being sent. This is done with sending a Start bit as an

active low start signal for the duration of one bit.

The receiver uses the falling edge from the Start bit to indicate that a new byte is ready to

be received. After the last data bit MSB is received check to see if the transmitted stop bit

is high as expected in the confirmation for the UART.

Chapter 3: Implementation of serial UART Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 24 -

3.2. Implementation of serial UART
The block diagram in figure 3.2 show the implementation of the serial UART connected via

the I/O interface block controlling the option of Special Function Register for serial data

speed “BAUD rate” using the register named TLBS and THBS. The serial interrupt for

receiving data plus the serial status register flag (SCON) which looks on the buffer status.

Instruction ROM
1Kx18 Block

OUT[17:0]

ADDRESS[9:0]

Data_in_io [7:0]

ID_io [7:0]

WE_io

Reset_io

DataBusP0 [7:0]

P1 [7:0]

AddBus P2 [15:0]

Input/Output Ports

Data_out_io [7:0]

RE_io

Reset

CLK
P3 [7:0]

P4 [7:0]

P5 [7:0]

PicoBlaze Core

INSTRUCTION [17:0]

ADDRESS [9:0]

PORT_ID [7:0]

OUT_PORT [7:0]

IN_PORT [7:0]

WRITE_STROBE

READ_STROBE

RESET INTERRUPT

INTERRUPT_ACK

P1.0 EX0

P1.1 EX1
P1.2 EX2

INTERRUPT

INTERRUPT_ACK
UART TX

UART RX

Serial
TX

Serial
RX

Data_to_uart [7:0]

Data_from_uart [7:0]

Write_to_uart

Read_from_uart

Rx_data_present

Data_in [7:0]

write_buffer

TBF_uart

TBH_uart

tx_buffer_full

tx_buffer_half_full

RBF_uart

RBH_uart

rx_buffer_full

rx_buffer_half_full

Data_out [7:0]

read_buffer
buffer_data_present

Reset_buffer

Reset_buffer

Figure 3.2 – Block diagram with TX and RX UART.

Chapter 3: Implementation of serial UART Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 25 -

Read and write to UART:
The Serial UART communicates via the serial buffer for transmitting and receiving data

named Serial Buffer “SBUF” and this is control by the SFR value HEX 08. For transmitting

data via TX UART and receiving data via RX UART will the SFR value 08 be activated via

the C-language program that writes or reads via SBUF. The VHDL code there interface

this are showed in line 216 to 222 in figure 3.3.

Figure 3.3 – VHDL code for Serial interface of UART

Chapter 3: Implementation of serial UART Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 26 -

BAUD Rate Timing:
The baud rate timer is a 16-bit timer that is controlled by a low and high byte send to the

SFR register, via the Timer Low byte Baud rate Serial “TLBS” and Timer High byte Baud

rate Serial “THBS”. The baud rate is calculate out from the clock frequency on the FPGA

board in this example the board is running with 50MHz and the baud rate is set to 9600Hz.

Calculation of value for BAUD Rate Timer:

32652.325
)960016(

000,000,50
)_16(

__ ≈=
⋅

⇒
⋅

=
Hz
Hz

RATEBAUD
frequencyClockvalueTimer

The nearest integer is 326 this will in excess of the required tolerance equivalent baud rate

of 9586Hz which is just 0.15%. Anything within 1% is really going to work as it allows for

inaccurate clock rates and really poor switching in the serial lines. The HEX value for the

baud rate timer will be HEX 0146 the low byte 0x46 and the high byte 0x01. This value is

also the standard settings with reset of the system until there is reloaded a new value to

the system via the special function register.

Calculation of the most common used baud rates with PC communication used on a FPGA

with a clock frequency at 50MHz:

BAUD Rate: Result: Value in Integer: Value in HEX: Tolerance:
9600 325.52 326 0146 0.147%
19200 162.76 163 00A3 0.147%
38400 81.38 81 0051 0.469%
57600 54.25 54 0036 0.469%

115200 27.12 27 001B 0.469%
Table 3.1 – List over standard BAUD Rate used in a FPGA there run with a frequency at 50MHz.

The HEX value for the baud rate timer is loaded via SFR value HEX 09 for the Low byte

and 0A for the high byte. The value is loaded to the TBS_uart variable in the VHDL code

show in figure 3.3 from line 224 to line 230 at Page 25. The baud rate timer counter code

in VHDL is showed in figure 3.4 at page 27.

Chapter 3: Implementation of serial UART Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 27 -

Figure 3.4 – VHDL code for Serial UART timer

Serial Status Register:
The serial status register sets flag for the TX/RT buffer and for the BDP flag for new

receive data in the RX buffer. The explanation of the flag function is shoved in table 3.2.

Figure 3.5 – Special Function Register SCON.

Bit Function
TBF Read FLAG Transmission Buffer Full there is set by hardware in TX UART.

If TBF = 1, Flag Transmission Buffer Full is set.
When the 16-byte FIFO buffer is full, this output becomes active HIGH. The host system should
not attempt to write any new data until the serial transmission has been able to create a space.
Any attempt to write data will mean that the new data is ignored.

TBH Read FLAG Transmission Buffer Half full there is set by hardware in TX UART.
If TBH = 1, Flag Transmission Buffer Half full is set.
When the 16-byte FIFO buffer holds eight or more bytes of data waiting to be transmitted, this
output becomes active HIGH. This is a useful indication to the host system that the FIFO buffer is
approaching a full condition, and that it would be wise to reduce the rate at which new data is
being written to the macro.

RBF Read FLAG Receiving Buffer Full there is set by hardware in RX UART.
If RBF = 1, Flag Receiving Buffer Full is set.
When the 16-byte FIFO buffer is full, this output becomes active HIGH. The host system should
rapidly respond to this condition by reading some data from the buffer so that further serial data is
not lost.

RBH Read FLAG Receiving Buffer Half full there is set by hardware in TX UART.
If RBH = 1, Flag Receiving Buffer Half full is set.
When the 16-byte FIFO buffer holds eight or more bytes of data waiting to be read, this output
becomes active HIGH. This is a useful indication to the host system that the FIFO buffer is
approaching a full condition, and that it would be wise to read some data in the very near future.

BDP Read FLAG for Receiving Buffer Data Present.
If BDP = 1, Receiving Buffer Data Present is set.
When the internal buffer contains one or more bytes of received data this signal will become active
HIGH and valid data will be available to read

Table 3.2 – List over Special Function Register SCON

Chapter 3: Implementation of serial UART Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 28 -

3.3. Simulation
The simulation is made out form the test program in figure 3.6 which sends serial data out

onto the comport with a baud rate at 115200 after having received a ASCI value ‘s’ from

e.g. a computer using the HyperTerminal. The value ‘s’ starts the transmission and the

program sends the value “HEY” to the computer via serial communication. With help from

P4 and P5 it is possible to watch the Interrupt status and the buffer status. The program is

tested in ModelSim but it is not easy to show on paper because the transmission occurs

over a lot of clock cycles and will not give much sense.

Figure 3.6 – Test program for serial UART

3.4. Test and result
In practical the HyperTerminal is used, as shown in

figure 3.7, to transmit and receive the test data. For

watching the Interrupt flag and the buffer status the

data analyzer is connected to port 4 and port 5.

The Serial UART is tested with success.
Figure 3.7 – HyperTerminal

Chapter 4: Implementation of Timers Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 29 -

Chapter 4:

Implementation of Timers

4.1. Introduction
This chapter describes the two implemented timers in the BGEPB1 the Timer 0 which is an

8-bit timer and Timer 1 which is a 16-bit timer. Both timers work as the count up with the

clock frequency, the timer interval depend on the clock frequency. It is possible to start and

stop the timer from the SFR named TCON and read the timer status in the same register

with look on timer flag to check the timer is running. The interrupt service routine can be

active with the register IEN0 shown in chapter 2, I/O ports interface at page 17 with use of

the interrupt enable ET0 and ET1. The register ISC0 from same chapter page 18 uses

Interrupt Service Control to clear the Interrupt in the C code program and when the timer is

equal to the set timer value it will activate the Interrupt and the C code program will be

enable to response to the interrupt and after end reading the C code program will be

enable to clear the interrupt and continue. The timer value is set by a timer register and will

be reloaded every time there sends a new value to this register.

4.2. Implementation of Timers
The Timers is implemented in the block named Input/Output ports in the block diagram

shown in chapter 3 at page 14 in figure 3.2 for communicate with the SFR to set timer

value, start/stop timer and the Interrupt service control register. After system reset on the

FPGA the timers will default be set to maximum value this will say the 8-bit timer is set to

HEX FF or integer 255 and the 16-bit timer is set to HEX FFFF or integer 65535. Both

timer will be stop after reset and shall starts via the TCON register.

Chapter 4: Implementation of Timers Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 30 -

The VHDL code in figure 4.1 show the option of the timer service control register made

after the same method in chapter 2 for the interrupt control. Where the looks on the

incoming register value and do option out from that.

Figure 4.1 – VHDL code for Timer control.

The VHDL code in figure 4.2 shows the code for the counter used for timer 0. The code for

timer 1 is exactly the same code the only difference between them is the use other

variable names and the variable TC0 there is a 8 bit value for timer 0 and the variable TC1

is a 16 bit value for Timer 1.

Figure 4.2 – VHDL code for the Timer 0 Counter

Chapter 4: Implementation of Timers Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 31 -

Timer Register:
The timer register is built for controlling the Timer 0, Timer 1 and Timer 2. The timer 2 is

not activated in version BGEPB1 but there is reserved space in the register for timer 2 to

later version update. The register TR0, TR1 and TR2 Is for start timer to run with an active

one and the TF0, TF1 and TF2 is timer flag which will be set when the timer is running out,

this is equal to the set timer value and uses the flag for activate the interrupt too. In figure

4.3 is the Timer Service Control Register TCON shown.

Figure 4.3 – Timer Service Control Register TCON.

Bit Function
TR0 Enable Timer Run 0 to start counting

If TR0 = 1, The Timer 0 will Rune.
TF0 Read FLAG for Timer 0

If TF0 = 1, The Timer 0 is just count out.
The FLAG will be set and clear by Hardware.

TR1 Enable Timer Run 1 to start counting
If TR1 = 1, The Timer 1 will Rune.

TF1 Read FLAG for Timer 1
If TF1 = 1, The Timer 1 is just count out.
The FLAG will be set and clear by Hardware.

TR2 Enable Timer Run 2 to start counting
If TR2 = 1, The Timer 2 will Rune. (This bit is not used in this version)

TF2 Read FLAG for Timer 2
If TF2 = 1, The Timer 2 is just count out.
The FLAG will be set and clear by Hardware. (This bit is not used in this version)

Table 4.1 – List over Special Function Register TCON.

Chapter 4: Implementation of Timers Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 32 -

Calculation of timer value:
The timing depends on the clock frequency and in this case the FPGA runs with 50MHz

and the maximum timer value created for the Timer 0 and Timer 1 is calculate to 5.1µS for

Timer 0 and 1.3107mS for Timer1 showed in the equation under this text.

S
Hz

decinvalueTimer
frequencyClock

SecinvalueTimer µ1.5

255
000,000,50

1

)___0(
_

1.___0 =

⇒

=

mS
Hz

decinvalueTimer
frequencyClock

SecinvalueTimer 3107.1

65535
000,000,50

1

)___1(
_

1.___1 =

⇒

=

This is an example to make a calculation of the timer value there is to be uploaded to the

timer out from the expected time at 500µS. The value will be 25000 as shown in the

equation under this text and therefore it is necessary to use the timer 1, a 16-bit timer, for

this operation because of the high number.

25000500000,000,50.___1____1 =⋅⇒⋅= SSecinvalueTimerfrequencyClockdecinvalueTimer µ

Chapter 4: Implementation of Timers Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 33 -

4.3. Simulation
A simulation is made on timer 0 and timer 1 out from the C program in figure 4.4. The

program set timer 0 with the loaded HEX value 19, which is 500nS, and timer 1 is loaded

to HEX value 32, being 1µS. Afterwards the timers are started and the timer flag and

interrupt flag is shown on port 4 and 5. The timer will run until the program is stopped.

Figure 4.4 – Test program for timer 0 and 1.

Chapter 4: Implementation of Timers Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 34 -

The simulation shows the timing. Timer 0 sets a flag after 25 clock cycles which has a

duration of 500nS, this is shown as TF0. Timer 1 set the first flag after 50 clock cycles on

the timer 1 count shown in TF1. The timers raises one clock cycle every time the flag is set

because there goes one clock cycle to clear the counter again. This is not useful and it is

necessary to change this in the VHDL code or take care of that in the C program. The

Interrupt goes high after the first Timer flag as is should, but because there are problems

with the Interrupt Service Routine in the C compiler. It is not possible to auto clear the

interrupt as expected with the Interrupt acknowledge. If it worked as expected there should

be calculates with a response up to 6 clock cycle before the flag would be clear in worst

case and these 6 clock cycles are also necessary to be taken care of in the C- or ASM-

code timer programming.

4.4. Test and result
The program is tested on hardware by downloading the code to the development board

and with help of the data analyzer it is possible to watch the timer flag and the status for

the Interrupt Service Routine on port 4 and 5. But the timing is not exactly what is shown in

the simulation because it takes a few extra clock cycles to write out on Port 4 and 5. But it

gives an idea of how it should work correctly.

Chapter 5: Implementation of Serial Flash ROM interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 35 -

Chapter 5:

Implementation of Serial Flash ROM interface

5.1. About serial interface
The serial Flash PROM interface can be accessed through serial data communication from

the FPGA via three data connections. Serial Data from Flash, Enable Serial Flash from

FPGA and Clock signal from the FPGA. The Flash PROM can only be used as Program

ROM or for fixed data as Ethernet MAC ID, ASCII data for display, encryption codes etc.

All types are fixed values which are programmed into the flash via JTAG standard

communication using the iMPACT tool from Xilinx Project Navigator, which is programmed

with the file formats named Object (.mcs) or HEX (.hex). The JATG is a serial bus made

for in-circuit test and programming using the four communications lines named Test Clock

(TCK), Test Mode Select (TMS), Test Data In (TDI) and Test Data Out (TDO) connected to

a external programming unit at the connector shown in the left side of figure 5.1.

Figure 5.1 – Serial hardware interface

The VHDL code for accessing the PROM information via the FPGA is available from

Xilinx’s homepage as free code. The Serial Flash PROM is not used in this program

because there is sufficient PROM for the code in the FPGA.

• XAPP694 Reading User Data from Configuration PROMs

http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?sGlobalNavPick=&sSecondaryNav
Pick=&category=-1209899&iLanguageID=1 or from the library Serial_Flash on the CD-ROM

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 36 -

Chapter 6:

Design of CAN-BUS Interface

6.1. Introduction
The Control Area Network (CAN) Bus interface is a serial asynchronous transmission

scheme that uses a communication protocol which efficiently supports distribution of real

time control with a very high level of security. The specification is defined with the ISO

11898 “OSI Model”. The CAN 2.0A is an extended message format defined in CAN 1.2

and CAN 2.0B describing both standard and extended message formats.

The Layer structure of the CAN BUS is

compared with the seven OSI model layer

showed in figure 6.1. The OSI layer is

compress to four main layers for the CAN

because some of the layer overlaps each

other, the four CAN layer is Physical Layer,

Transfer Layer, Object Layer and Application

Layer these layer is describe in the four

subjects under this text.
Figure 6.1 – CAN layer & OSI layer.

Physical Layer:
The physical layer is the hardware specifications for the CAN standard and use connector

type as standard male 9-PINs SUB-D connector and the cable is typical Shielded Twisted

Pair (STP) or Un-shielded (UTP) cables the characteristic for the line impedance is 120

Ohm, common mode voltage ranges from -2 Volts on CAN_L to +7 Volts on CAN_H. The

balanced differential 2-wire CAN bus can transmitted signal up to 40 meters with a speed

of 1Mbps and less at 1km up to 20Kbps. The CAN standard bit encoding use the system

called Non Return to Zero (NRZ). The CAN transmits data through a binary model of

dominant bits and recessive bits where dominant is logic 0 and recessive is logic 1. The

maximum bits there most been send subsequent is five dominant or recessive, if more

there will be set an extra bit there is reversed from the other bits.

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 37 -

Transfer Layer:
The Transfer layer handles the protocol for transmitting and receiving data via message

transfer is manifested and controlled by four different frame types, the specification for

CAN protocol 2.0A is shown in figure 6.1 and stated in bullets point.

• Start of frame

• The Arbitration field identifier the ID.

• The Control field consists of four bits Data length Code that identify how many

Bytes there are in the data packet

• The Data field consists of the data to be transferred

• The Cyclic Redundancy Check (CRC) sequence is calculate from the Start Of

Frame (SOF) field to and with the Data field, with the polynomial

X15+X14+X10+X8+X7+X4+X3+1

• The ACK field acknowledgment a valid message received correctly

• End of frame

Figure 6.2 – CAN protocol Specification 2.0A

Object Layer:
The object layer handles the message filtering and the messages, the message filtering

checks that the data packets are valid; there is a different between this function for either

the transmitter or the receivers of the messenger. The status handling 5 different error

types named Bit Error, Stuff Error, CRC Error, Form Error and Acknowledgment Error.

Application Layer:
The application layer handle the communication to the program code read and write to

register, in this project are the SFR used.

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 38 -

6.2. Design of CAN-BUS Hardware Interface
The Hardware interface is build up on a Printed Circuit Board (PCB) and made out from

the block diagram in figure 6.3. The interface board will be connected to the development

board via an IDC header being the standard connector on the development board. The

Interface board will be supplied with 3.3 volt power from the development board and there

will be transmitted and received data via this header. The connection out to the world is a

male 9-PINs SUB-D connector there is mounted with UTP cable.

FPGA
Development board

(Spartan-3 Starter kit Board)

CAN-BUS
Interface

Power

GND

RX

TX CAN_H

CAN_L

CAN_H

CAN_L

C
A
N

U
N
I
T

Figure 6.3 – Block diagram over CAN-BUS Interface.

Interface:
The design use a MAX3053 for interfaces between the CAN protocol from the FPGA and

the physical wires of the bus lines in a CAN. The MAX3053 has three different modes of

operation high-speed, slope control, and shutdown. High-speed mode allows data rates up

to 2Mbps. In slope control mode, data rates are between 40kbps and 500kbps so the

effects of EMI are reduced and unshielded twisted or parallel cable may be used. In

shutdown mode, the transmitter is switched off, and the receiver is switched to a low-

current mode.[4]

Figure 6.4 – Interface Circuit Diagram

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 39 -

Peripherals components:
The circuit in figure 6.4 at page 38 is made out from an application note in the data sheet

page 1 for the device named MAX3053[4] the peripherals components is the C02 there is a

ceramic decouple capacitor removing noise from the power supply lines.

Potentiometer PR01 and resister R01 is place to adjust the value from 22KΩ to 172KΩ the

reason for making this adjustment is to get the line drivers to switch on and off as quickly

as possible optimizing the limit of rise and fall slope of the data signal. Example with a

speed at 500Kbps the resistor value will be 24KΩ shown in the data sheet page 4[4].

The capacitor C01 is mounted for hold the shutdown input pin high impended and the

device will always be turned on to run. If the shutdown pin is set to low the device will go in

the shutdown mode. The last features in the circuit is the jumper JP01 and the impedance

resistor R02 at 120Ω, it the jumper is set the circuit will make an impedance termination for

the CAN bus.

Design:
The circuit is made on a single side PCB using Surface-Mount Devices (SMD) and

designed in Protel Design Explore 99 SE there are a full functional 30 days trial version of

a professional PCB layout tool. The layout result is showed in figure 6.5 for the bottom

layer to the left, the top over layer in the middle and the bottom over layer to the right.

Figure 6.5 – Bottom layer, top over layer and bottom over layer.

Figure 6.6 – Pictures of the CAN bus interface.

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 40 -

6.3. Design of CAN-BUS VHDL interface for transmitting
The CAN transmitter interface is designed as the VHDL part which has not been

implemented in the BGEPB1 core at the moment because there is still missing some

development. But the corner stones have been built to be able to send data test packets

from the VHDL interface. The data packet is generated from the protocol; the ID address

set to HEX 200 and four data byte set to HEX AA, FF, 00 and 55. The CRC calculation is

done manually and gives the HEX value 69, this is all fixt value for the data packet. In this

VHDL code the serial sequence is automatically generates as shown in figure 6.7.

Byte 0
HEX AA

Control
HEX 4

Byte 1
HEX FF

Byte 2
HEX 00

Byte 3
HEX 55

CRC
HEX 69

ID
HEX 200

Res

Figure 6.7 – Test Data packet for transmission via CAN.

The data value will be added together in a vector chosen as the worst case value of 95 bit

according to the CAN specification 2.0A. When the data is “received”, in this code example

the values are set to fixed values, the data would be added together chosen out after the

value of bytes as shown in code line 138 to 155 in figure 6.8 at page 41. The unused bit in

the vector is set to high and will be sending as high output to the CAN interface. The loop

from line 160 to 183 in the VHDL code is a loop that inserts the recessive and the

dominant bit after every five identically bit. The function in line 188 send data serial out to

the CAN bus interface named TX_CAN at the output on FPGA.

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 41 -

Figures 6.8 – VHDL code for transmit data via Data Link Layer.

Chapter 6: Design of CAN-BUS Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 42 -

6.4. Simulation
This simulation in figure 6.9 shows the data output from the CAN transmission VHDL code

there will be send out to the CAN hardware interface from the FPGA.

Figure 6.9 – Simulation of CAN TX in ModelSim

6.5. Test and result
The CAN transmission is tested by sending the data packet as described in chapter 6.3

the data packet is received with a CAN-USB unit from www.canusb.com. The CAN unit is

connected to the computer via USB and as a node at the network. For measurement the

right data packet in the development process is connected an Oscilloscope from the

company Tektronix type TDS 220 there are a digital real-time stores oscilloscope.

There is measurement differential on the CAN bus signal, between the CAN_L (pin2) and

the CAN_H (pin 7) at the SUB-D connector. The ground probe from the oscilloscope is

connected to pin 2, the signal is inverted compared with the signal shown in figure 6.7.

Figure 6.10 – Oscilloscope picture from transmission of CAN data packet.

Chapter 7: Software Setup Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 43 -

Chapter 7:

Software Setup

7.1. Introduction
This chapter is a short guide to setup the software and give an overview of the step for

step development of a program in VHDL and C language for a PicoBlaze microcontroller

ready to run in a Spartan-3 FPGA from Xilinx.

Download the Xilinx Design tool, Project Navigator, ISE WebPACK Service Pack 6.3.03.i

and the Simulation tool, ModelSim XE II 5.8C from xilinx.com. Install the software onto the

computer and copy the project library named BGEPB1 from the CD-ROM which has been

attached at the last page in this report to the rood of you computer or in a folder with less

at eight character.

7.2. Setup of C and ASM Compiler

Figure 7.1 – Xilinx Project Navigator

Start the Xilinx Project Navigator and open

the project from the library named

BGEPB1.

Compile the project with left click on the

embedded-connectivity (embedded.vhd) as

it is marked with a blue line in the Sources

in Project window, and after-wards right

click at the Synthesize-XST and chose

Rerun All in the Process for Source

window.

Minimize the Project Navigator and copy the PicoBlaze C compiler named PCCOMP from

the CD-ROM to the C:\ root of the computer. Open the Notepad document named

prog_rom.c and edit in the document from the CD if you wish to change something

otherwise just save it and minimize the document. Right click at the file named RUN.bat

and create a shortcut to the desktop. Right click at the icon and rename it to Compile C to

ASM code and afterwards chose Edit to change the location in the second line, where it is

described where the compiled file shall be copied to “copy c:\pccomp\prog_rom.psm

c:\vhdl\BGEPB1\prog_rom.psm” save and close the document and double-click on the

icon named “Compile C to ASM code”. The C code will be compiled to ASM code with the

PCCOMP compiler and copy to the BGEPB1 library. Show in figure 7.2 if there are errors

Chapter 7: Software Setup Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 44 -

in the code, they will be listed numbered line-codes it will be shown in the DOS shell along

with the syntax problem.

Figure 7.2 – PCCOMP C compiler run from DOS shell.

Open the library named BGEPB1 and make a shortcut to the file named RUN.bat and

copy this shortcut to the desktop. Rename the ICON to “Compile ASM to VHDL Format”

Right click and chose Edit and change the location if it is different. Double-click on the icon

Compile ASM to VHDL Format the program compile the ASM code to machine code in

VHDL format with help of the PicoBlaze compiler named KCPSM3 showed in figure 7.3. If

there are any errors in the ASM code the errors be list in the DOS shell.

Figure 7.3 –KCPSM3 ASM compiler run from DOS shell.

Recompile the project in Xilinx project Navigator and the project is ready to be tested in

ModelSim. Every time the c-code is changed it is necessary to Compile C to ASM code

afterwards Compile ASM to VHDL Format and recompile the project in Xilinx Project

Navigator.

Chapter 7: Software Setup Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 45 -

7.3. Simulation in ModelSim
The easiest and most undemanding way to simulate in ModelSim is by adding a Test

Bench Waveform to the project showed in this part. The description of how to setup a Test

Bench mark and how to use it with ModelSim is explained in this section.

Figure 7.4 – Add New Test Bench Waveform

Figure 7.5 – Chose Source File for Test Bench

To add a Test Bench Waveform in Xilinx Project

Navigator, right click in the Sources in Project

window and chose New Source. Select Test

Bench Waveform in the menu to the left show in

figure 7.4 and enter a name for the file. Click next

and chose the VHDL file you would like to test In-

and Output on, in this example the embedded file

show in figure 7.5 Click next and chose create.

The Project Navigator will open a window like the

one which is shown in figure 7.6 in the bottom of

the page. And you will be asked about clock

frequency, in this case it is set to 20nS and a duty

cycle at 50% because this is the speed the

Spartan-3 board runs at. The blue colour shows

output and yellow shows input. The reset is set

high in the beginning of the simulation and

afterwards it is low.

For start simulation with ModelSim double-click

on the “Simulation Behavioral Model” and the

program will start and run afterwards simulation for the VHDL project.

Figure 7.6 - Test Bench Waveform.

Chapter 7: Software Setup Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 46 -

7.4. Download to FPGA via iMPACT tool
After complete compiling of the VHDL project without errors in Xilinx Project Navigator and

the pin assignment is done, the project ready to be downloaded to the FPGA. But if it is the

first time the project is downloaded to the FPGA there are some settings that needs to be

checked, but only once.

Figure 7.7 – Project Properties

Figure 7.8 – Process Properties

Figure 7.9 – Process Properties

Figure 7.10 – iMPACT

Right click on the project device in the Sources in

Project window and chose properties. In the

Project Properties check the right Device Family,

Device, Package and speed Grade is chosen as

the same as the FPGA device which is used on

the development board.

Left click with the mouse on the VHDL project

source file in the Sources in project window, and

chose in the Processes for Source window the

Generate Programming File and right click here

and chose properties in the menu. The Process

Properties window will appear, and then chose

the menu named Startup Option and select the

function named FPGA Start-Up Clock to JTAG

Clock press OK! As showed in figure 7.8.

Right click on the Configure Device (iMPACT)

and chose properties in the menu. Select the

Configuration Mode and chose this to Boundary

Scan. Press OK! For save the change, show in

figure 7.9.

Right click on the Generate Programming File

and select Rerun all in the menu. Make assured

that there are no warnings or errors in the

compiled code. Doublet click on the Configure

Device (iMPACT). After the new program is open

iMPACT chose the function named Boundary-

Scan in the menu-bar show in figure 7.10.

Chapter 7: Software Setup Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 47 -

Cancel the automatic saving of files from the VHDL project, the program will automatically

ask when it starts up. The Boundary-Scan has found two devices the XC3S200 FPGA and

the XCF02S Flash mounted on the development Spartan-3 Starter Kit Board. If there is

used another board the Boundary-Scan will via the JTAG connection find these devices

there are mount on this development board.

Figure 7.11 – iMPACT Boundary-Scan

The search result for the Spartan-3 Starter

Kit Board is show in figure 7.11.

Right click on the FPGA XC3S200 device in

the program and chose Assign New

Confirmation File. Select the embedded.bit

file in the library named BGEPB1 and

chose open.

Right click on the FPGA device XC3S200

and chose Program and press OK for

accepts programming of the device.

Note. Make sure the Jumper JP1 is removed on the development Spartan-3 Starter Kit

Board for program the FPGA.

Chapter 8: Conclusion Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 48 -

Chapter 8

Conclusion
The project has more or less been successful in reaching the aim of this project. The

development of the PicoBlaze microprocessor core running in a new version of

microcontroller, named BGEPB1 created with a simplified Special Function Register whit

controlled parallels I/O ports, serial UART, timer and interrupts, is complete as seen in the

test results.

The project period compared with the time plan has not really been fulfilling. After project

week 16 where the development of the CAN bus started and the problem with

programming in VHDL started for real, a lot of data converting and manipulating of data

vector this have given a lot of synthesize problems In the Xilinx Project Navigator. This due

to the project not just having an Implementation of a microprocessor in a FPGA but also

there has been a new VHDL language to learn to be able to make the project.

Implementation of PicoBlaze Core:
The status for the Implementation of the PicoBlaze microprocessor in the microcontroller,

the BGEPB1, is complete in regards to the requirement given. The microcontroller is ready

to be used and it is easy to implement new function in the VHDL code e.g. more timers

and extra interrupts. The only thing which has not been tested and made is a C- or ASM

code example for the Interrupt control which reads the Interrupt and automatically sends

an Interrupt acknowledge after end reading.

Design of CAN bus:
The CAN bus interface is made in hardware and tested in transmit- and receive-mode and

tested functional. The lower Data Link Layer is made In VHDL controlling the 8-bit data

packets which is send serial out with the encoding standard, known as Non Return to

Zero, and inset the recessive and the dominant bit after every five identically bit. The CAN

bus is not finished. The development is still missing functions as Cyclic Redundancy

Check calculation and Error bit control.
The future development at the project:
The future plans for the project is to continue the development of the CAN bus interface

and implementation this in the BGEPB1 microcontroller which will be available at the

homepage www.bg-elektronik/fpga

Benjamin Grydehoej

Related Materials and References Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 49 -

Related Materials and References
References:

1. Roman – Jones, Inc. – Emulate 8051 Microprocessor in PicoBlaze IP Core
- http://www.roman-jones.com/PB8051Microcontroller.htm

2. Xilinx.com - PicroBlaze 8-bit Embedded Microcontroller User Guide, Page 13-14
- http://www.xilinx.com/bvdocs/userguides/ug129.pdf

3. Xilinx.com – UART Transmitter and Receiver Macros, Page 3
- http://www.xilinx.com/bvdocs/appnotes/xapp223.pdf

4. Maxim-ic.com – Data sheet, Low Supply Current CAN Transceiver, page 1 & 4
- http://pdfserv.maxim-ic.com/en/ds/MAX3053.pdf

Bibliography:
Circuit Design with VHDL – Volnei A. Pedroni – ISBN 0-262-16224-5

Microcomputer Components - 8-Bit single-Chip Family – Siemens – User’s Manual 8/95

PicoBlaze 8-bit Embedded Microcontroller User Guide – UG129 (v1.1) June 10, 2004
Xilinx’s homepage - http://www.xilinx.com/bvdocs/userguides/ug129.pdf

PicoBlaze C compiler User’s Manual 1.1 July 2005 – Francesco Poderico
Francesco Poderico’s homepage - http://www.poderico.co.uk
Spartan-3 Starter Kit Board User Guide – UG130 (v1.1) May 13, 2005
Xilinx’s homepage - http://www.xilinx.com/bvdocs/userguides/ug130.pdf

Software:
Xilinx Design tool - Project Navigator - ISE Service Pack 6.3.03i (Windows)
Xilinx’s homepage - http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp

Simulation program - ModelSim XE II/Starter 5.8C (Windows)
Xilinx’s homepage - http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp

PicoBlaze C compiler – PCCOMP (DOS)
Francesco Poderico’s homepage - http://www.poderico.co.uk/down.html

PicoBlaze Assembler compiler – KCPSM3 (DOS)
Xilinx’s homepage -
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=PRODUC
TS&sSecondaryNavPick=Design+Tools&key=picoblaze-S3-V2-Pro

PicoBlaze Debugger – pBlazIDE (Windows)
Xilinx’s homepage - Mediatronix’s homepage - http://www.mediatronix.com/pBlazeIDE.htm

Appendix A: The VHDL code for I/O Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 50 -

The VHDL code for I/O Interface

Appendix A: The VHDL code for I/O Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 51 -

Appendix A: The VHDL code for I/O Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 52 -

Appendix A: The VHDL code for I/O Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 53 -

Appendix A: The VHDL code for I/O Interface Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 54 -

Appendix B: Special Function Register (BGEPB1.h) Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 55 -

Special Function Register (BGEPB1.h)

//***
//*COPYRIGHT: BENJAMIN GRYDEHOEJ - WWW.BG-ELEKTRONIK.DK - 2006 - SFR for BGEPB1 *
//***
// Author: Benjamin Grydehoej
// Create the: 4th February, 2006
// Last update the: 14th April, 2006
// File: BGEPB1.h
// Target Hardware: Xilinx Spartan3 - XC3S200
// Tool chain: Notepad - Microsoft Version 5.1
// Compiler: PCCOMP alpha 1.7.3 by Francesco Poderico
// Version: 1.0.A
//
// Special Function Register for BGEPB1
//***

// Parallel port ID:
#define P0 0x01 // Port 0 8-bit I/O - SFR P0, HEX 01 DataBus
#define P1 0x02 // Port 1 8-bit I/O - SFR P1, HEX 02 Data I/O
#define P2L 0x03 // Port 2 8-bit O - SFR P2L, Low byte HEX 03 AddressBus
#define P2H 0x04 // Port 2 8-bit O - SFR P2H, high byte HEX 04 AddressBus
#define P3 0x05 // Port 3 8-bit I/O - SFR P3, HEX 04 Data I/O
#define P4 0x06 // Port 4 8-bit I/O - SFR P4, HEX 05 Data I/O
#define P5 0x07 // Port 5 8-bit I/O - SFR P5, HEX 06 Data I/O

// Serial Data:
#define SBUF 0x08 // Serial Buffer
#define TLBS 0x09 // Timer Baud rate serial, low byte - SFR TLBS, HEX 09
#define THBS 0x0A // Timer Baud rate serial, high byte - SFR TLBS, HEX 10
#define SCON 0x0B // Serial Channel Control Register - SFR SCON, HEX 0B

// Interrupt Service Rutine:
#define IEN0 0x0C // INTERRUPT ENABLES - SFR IEN0, HEX 0C
#define IEN1 0x0D // INTERRUPT ENABLES - SFR IEN1, HEX 0C
#define ISC0 0x0E // INTERRUPT SERVICE CONTROL - SFR ISC0, HEX 0E

// Timer Service Rutine:
#define TCON 0x0F // TIMER SERVICE CONTROL - SFR TCON, HEX 0F
#define TC0 0x10 // Timer Count 0 - TC0, HEX 10
#define TCL1 0x11 // Timer Count 1 - Low byte TCL1 HEX 11
#define TCH1 0x12 // Timer Count 1 - High byte TCH1 HEX 12

Appendix C: Pin Option for FPGA and Development board Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 56 -

Pin Option for FPGA and Development board
I/O Name: I/O Direction PIN: Bank: Connector: SRAM:
tx Output R13 BANK4 TXD
rx Input T13 BANK4 RXD
reset Input L14 BANK3 BTN3 (User Reset)
PORT_5<7> InOut A10 BANK1 A2 Expansion Connector - 28
PORT_5<6> InOut B10 BANK1 A2 Expansion Connector - 27
PORT_5<5> InOut A9 BANK1 A2 Expansion Connector - 26
PORT_5<4> InOut A8 BANK0 A2 Expansion Connector - 25
PORT_5<3> InOut B8 BANK0 A2 Expansion Connector - 24
PORT_5<2> InOut A7 BANK0 A2 Expansion Connector - 23
PORT_5<1> InOut B7 BANK0 A2 Expansion Connector - 22
PORT_5<0> InOut B6 BANK0 A2 Expansion Connector - 21
PORT_4<7> InOut A5 BANK0 A2 Expansion Connector - 20
PORT_4<6> InOut B5 BANK0 A2 Expansion Connector - 19
PORT_4<5> InOut A4 BANK0 A2 Expansion Connector - 18
PORT_4<4> InOut B4 BANK0 A2 Expansion Connector - 17
PORT_4<3> InOut A3 BANK0 A2 Expansion Connector - 16
PORT_4<2> InOut D10 BANK1 A2 Expansion Connector - 15
PORT_4<1> InOut D9 BANK1 A2 Expansion Connector - 14
PORT_4<0> InOut D8 BANK0 A2 Expansion Connector - 13
PORT_3<7> InOut K13 BANK3 Slider Switch (SW7)
PORT_3<6> InOut K14 BANK3 Slider Switch (SW6)
PORT_3<5> InOut J13 BANK3 Slider Switch (SW5)
PORT_3<4> InOut J14 BANK3 Slider Switch (SW4)
PORT_3<3> InOut H13 BANK2 Slider Switch (SW3)
PORT_3<2> InOut H14 BANK2 Slider Switch (SW2)
PORT_3<1> InOut G12 BANK2 Slider Switch (SW1)
PORT_3<0> InOut F12 BANK2 Slider Switch (SW0)
PORT_2<15> Output K3 BANK6 A1 Expansion Connector - 34 A15
PORT_2<14> Output J3 BANK6 A1 Expansion Connector - 31 A14
PORT_2<13> Output J4 BANK6 A1 Expansion Connector - 32 A13
PORT_2<12> Output H4 BANK7 A1 Expansion Connector - 29 A12
PORT_2<11> Output H3 BANK7 A1 Expansion Connector - 30 A11
PORT_2<10> Output G5 BANK7 A1 Expansion Connector - 27 A10
PORT_2<9> Output E4 BANK7 A1 Expansion Connector - 28 A9
PORT_2<8> Output E3 BANK7 A1 Expansion Connector - 25 A8
PORT_2<7> Output F4 BANK7 A1 Expansion Connector - 26 A7
PORT_2<6> Output F3 BANK7 A1 Expansion Connector - 23 A6
PORT_2<5> Output G4 BANK7 A1 Expansion Connector - 24 A5
PORT_2<4> Output L4 BANK6 A1 Expansion Connector - 14 A4
PORT_2<3> Output M3 BANK6 A1 Expansion Connector - 12 A3
PORT_2<2> Output M4 BANK6 A1 Expansion Connector - 10 A2
PORT_2<1> Output N3 BANK6 A1 Expansion Connector - 8 A1
PORT_2<0> Output L5 BANK6 A1 Expansion Connector - 6 A0

Appendix C: Pin Option for FPGA and Development board Napier University Edinburgh

Benjamin Grydehoej (04007714) – BEng (Honours) Electronic and Computer Engineering

- 57 -

I/O Name: I/O Direction PIN: Bank: Connector: SRAM:
PORT_1<7> InOut B1 BANK7 A1 Expansion Connector - 19
PORT_1<6> InOut C1 BANK7 A1 Expansion Connector - 17
PORT_1<5> InOut C2 BANK7 A1 Expansion Connector - 15
PORT_1<4> InOut R5 BANK5 A1 Expansion Connector - 13
PORT_1<3> InOut T5 BANK5 A1 Expansion Connector - 11
PORT_1<2> InOut R6 BANK5 A1 Expansion Connector - 9
PORT_1<1> InOut T8 BANK5 A1 Expansion Connector - 7
PORT_1<0> InOut N7 BANK5 A1 Expansion Connector - 5
PORT_0<7> InOut D1 BANK7 D7
PORT_0<6> InOut E1 BANK7 D6
PORT_0<5> InOut G2 BANK7 D5
PORT_0<4> InOut J1 BANK6 D4
PORT_0<3> InOut K1 BANK6 D3
PORT_0<2> InOut M2 BANK6 D2
PORT_0<1> InOut N2 BANK6 D1
PORT_0<0> InOut P2 BANK6 D0
clk Input T9 BANK4 50MHz (IC4)

FPGA Ball Grid Array connections.

